当前位置:首页 > 高压变压器 > 正文

变压器高压侧低压侧

文章阐述了关于变压器高压侧低压侧,以及变压器高压侧低压侧绝缘电阻值吸收电阻率的信息,欢迎批评指正。

简述信息一览:

怎么计算高低压侧电流?

1、高压侧电流=变压器容量/20,低压侧电流=变压器容量*2。比如说1000KVA的变压器,高压侧电流=1000/20=50A,低压侧电流 =1000*2=2000A,这种方法过于粗糙,一般都是设计院用来开关元型选型、电缆选型和校验的时候常用的方法。公式计算法。I=S/732/U I--电流,单位A。

2、计算高压侧电流:- 使用变压器容量除以100,取整数倍,然后乘以5。例如,一个1000千伏安(KVA)的变压器,计算方法是:1000 / 100 = 10(取整数倍),10 * 5 = 55安培(A),这是高压侧的电流值。 计算低压侧电流:- 同样地,使用变压器容量除以100,取整数倍,然后乘以144。

变压器高压侧低压侧
(图片来源网络,侵删)

3、首先计算高压侧电流。变压器的容量为2500kVA,电压比为35kV到0.4kV,即35000V到400V。高压侧电流可通过变压器容量除以高压侧电压求得,同时考虑到电压的相位差,通常***用732作为系数。因此,高压侧电流计算公式为:2500/35/732,计算结果约为41A。接下来计算低压侧电流。

4、根据变压器的额定电流计算公式,当110KV变电站的主变压器容量为50000KVA时,高压侧的额定电流可以通过I=额定容量/(732*额定电压)计算得出。具体为50000KVA除以732再乘以110KV,即264A。同样,低压侧的额定电流为50000KVA除以732再乘以10KV,约为2888A。

5、计算高压侧电流的另一种方法是:首先将变压器的容量除以100,取整数倍,然后乘以5。例如,一个1000千伏安(KVA)的变压器,除以100后取整数倍为10,那么高压侧电流就是10乘以5,等于55安培(A)。如果使用144作为乘数,则是计算低压侧电流,即10乘以144等于1440安培(A)。

变压器高压侧低压侧
(图片来源网络,侵删)

6、变压器容量与电流之间的关系可通过多种方法计算。一种简便的方法是,变压器容量除以100,取整数倍,然后乘以5得到高压侧电流值;同样地,乘以144得到低压侧电流值。例如,对于1000KVA的变压器,将1000除以100取整数倍后得到10,因此高压侧电流为10*5=55A,低压侧电流为10*144=1440A。

变压器高压侧对低压侧绝缘怎么摇?

1、变压器内部,高压的三相和低压的三相都是连接在一起的,分别摇高低压的三相对地和高低压各相之间的绝缘没有意义。高压侧绝缘电阻测试(高压对地绝缘电阻):高压三相短接,低压三相短接及接地。低压侧绝缘电阻测试(低压对地绝缘电阻):低压三相短接,高压三相短接及接地。

2、将摇表打开到2500v 用一根线接到变压器缸沿螺丝上。旋懂旋钮,之后会看到摇表充电,之后会达到无穷大∞。之后再将另一表笔搭到缸沿螺丝,此时为0。以上是判断表是好的。之后再分别搭接到高压侧,低压侧。此时测出来的绝缘就是变压器高低压侧的绕组绝缘值。如果要是1min那么就是吸收比。

3、测试前应对变压器高、低压侧各相桩头进行充分放电,放尽变压器内部残余,方可测试。测试时,绝缘摇表应放置于水平位置,手握绝缘摇表绝缘部位,观察表的指针随摇动慢慢升起,在达到无穷大时瞬时短接两接线柱:L与E。会发现指针为“O”。方能继续使用摇表测试绝缘电阻。

4、测量时把高、低压绕组的引线端分别短接(可用细铁线或裸铜线),测量高压绕组时将低压绕组接地,摇表的L端接高压绕组E端接地(或低压绕组,因为已经接地),开始摇动摇表同时计时15秒读得一绝缘值(不能停顿,一直匀速摇动摇表)至1分钟再读得一绝缘电阻值。带手套去掉摇表接线后停摇表。

5、在测量变压器的绝缘性能时,通常需要检测三个关键数值:高压侧对低压侧的绝缘电阻、高压侧对地的绝缘电阻以及低压侧对地的绝缘电阻。为了确保测量的准确性,建议使用2500伏的绝缘摇表或其他专业测试设备。在进行测量之前,必须做好充分的准备工作。

变压器高压侧一相接地低压侧电流如何变化?

对于无中性点接地的变压器:如果变压器的高压侧无中性点接地,低压侧的电流不会受到影响。这是因为变压器的绝缘系统可以将接地故障限制在高压侧,不会传递到低压侧。 对于有中性点接地的变压器:如果变压器的高压侧有中性点接地,一相接地将导致低压侧电流的增加。

高压侧为三角形接线且为小电流接地或不接地系统,如果一相接地,另两相的对地电压会升高为原来的732倍,也即不接地的两相的对地绝缘要求提高。

在中性点不接地系统或小电流接地系统中,如果高压侧发生一相接地故障,低压侧的电压不会受到影响。这是因为仅在高压侧一相接地的情况下,这一相对地电压会降至零,然而这一相的对中性点电压并未发生变化,同时这一相与其他相之间的电压也保持不变。变压器的低压侧是否接地,通常取决于变压器的绕组方式。

变压器高压侧的电流随着低压侧电流按照变压器的变比比例变化。比如变比为1:40,低压侧上升40A,高压侧上升1A。

变压器低压侧的电流如何折算到高压侧

1、变压器的变压比N等于高压侧与低压侧匝数之比,即N=N1/N2,根据电压与匝数成正比的关系,可以得出U1/U2=N1/N2。再根据电流与电压成反比的关系,我们可以推导出低压侧电流I1与高压侧电流I2之间的关系,即I1/I2=N2/N1。

2、如果是粗算的话(不考虑高压系统阻抗Zs),则低压三相短路电流I3=In/Uk;然后可以根据变压器变比折算到高压侧,即I3‘=I3*Un2/Un1。其中UnUn2分别为变压器原边、次边额定电压,I3为高压侧电流,I3为低压侧电流,Uk为变压器短路阻抗百分比。

3、变压器的低压侧额定电流计算为50/0.4/732,得到72A。空载电流为0.768/72,百分比约为1%。空载损耗为145W。负载损耗在温度为75摄氏度时,需乘以温度折算系数,该系数为(235+75)/(235+31),即165。因此,负载损耗为828×165,等于968W。

10KV配电变压器高压侧和低压侧直流电阻平衡值是多少,怎么计算

1、以10KV配电变压器为例,高压侧和低压侧的直流电阻平衡值需满足标准要求。具体操作时,先确保测量环境符合要求,然后在变压器同一档位测量电阻值。例如,测量得到的高压侧电阻值分别为10欧姆、2欧姆、1欧姆,低压侧电阻值分别为5欧姆、1欧姆、2欧姆。

2、GB1094系列标准有明确规定,线电阻不平衡率必须小于2%,相线阻不平衡率必须小于4%。具体算法也非常简单。在同一档位测出的电阻值相加,再求其平均数,再依次用测得的电阻和平均数对比,就知道不平衡率是多少。

3、变压器的电阻不平衡率=(线圈最大电阻值-线圈最小电阻值)/三相电阻的平均值。相与相之间的电阻不平衡率通常情况下要小于等于0.2%,线与线之间的电阻不平衡率通常情况下小于等于0.4%。

4、大型电力变压器由于其绕组匝数多、线径粗,电阻值相对更小。例如大型220kV、容量为180MVA及以上的电力变压器,高压绕组直流电阻可能在零点几欧姆甚至更低,低压绕组电阻可能在毫欧级别。测量范围也会受测量方法和仪器精度影响。

5、变压器直流电阻测量合格范围因多种因素而异,并无固定统一数值。对于三相变压器,各相绕组直流电阻不平衡率有要求。在额定分接下,线间差别一般不大于三相平均值的2%;对于中性点直接接地的绕组,相电阻差别一般不大于三相平均值的4%。

6、在10kv/0.4kv-160kvA的配电变压器中,高压侧线间的直流电阻大约在8欧姆附近。这一数值是根据变压器设计和制造标准得出的,反映了变压器在正常工作状态下的电气性能。低压侧相间的直流电阻则更为细微,大约在0.004欧姆左右。

变压器的变比是怎么定义的?为什么有的说是高压侧比低压侧?

1、变压器的变比是指高压侧线电压和低压侧线电压的比例,通常用高压侧比低压侧来表达。实际操作中,一般不会用一次侧指代高压侧,二次侧指代低压侧,因为这样在涉及三绕组变压器时就会出现混淆。因此,在口头交流中,人们可能随意使用高压侧和低压侧的表述。理解变比时,要注意它与变压器的匝数比的区别。

2、值得注意的是,变压器的变比与匝数比是两个不同的概念。变比是线电压的比值,而匝数比则是线圈绕组的电压或电流之比。

3、变压器的变比是指高压侧线电压和低压侧线电压之比。一般书面不会用一次侧指代高压侧,二次侧指代低压侧,因为三绕组变压就不好指代了,口头随意。不要和变压器的匝数比弄混,因为变比为线电压之比,匝数比为相电压之比。匝数比和变比间的关系和变压器的连接组别有关。

4、变压器的额定变比:在变压器空载条件下,额定高压绕组电压U1和低压绕组电压U2之比,也可以说是变压器的初级电压和次级电压之比。实际变比:中心抽头变比,变压器的参数值,以此变比为依据提供。

5、我看电机学教材(机械工业出版的)上变比K写的是一次侧电动势比上二次侧电动势即一次侧电压比上二次侧电压,因为感觉跟中学学的没区别就没怎么在意。

关于变压器高压侧低压侧,以及变压器高压侧低压侧绝缘电阻值吸收电阻率的相关信息分享结束,感谢你的耐心阅读,希望对你有所帮助。